

bravado_core documentation

bravado_core is a Python library that implements the Swagger 2.0 Specification.

Client and servers alike can use bravado_core to implement these features:

	Swagger Schema ingestion and validation

	Validation and marshalling of requests and responses

	Validation and marshalling of user-defined Swagger formats

	Modelling Swagger #/definitions as Python classes or dicts

For example:

	bravado [http://github.com/Yelp/bravado] uses bravado-core to implement a fully functional Swagger client.

	pyramid_swagger [http://github.com/striglia/pyramid_swagger] uses bravado-core to seamlessly add Swagger support to Pyramid webapps.

Contents:

	Configuration

	Python Models

	User-Defined Formats

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Configuration

All configuration is stored in a dict.

from bravado_core.spec import Spec

spec_dict = json.loads(open('swagger.json', 'r').read())

config = {
 'validate_requests': False,
 'use_models': False,
}

swagger_spec = Spec.from_dict(spec_dict, config=config)

	Config key

	Type

	Default

	Description

	validate_swagger_spec

	boolean

	True

	
Validate the Swagger spec against

the Swagger 2.0 Specification.

	validate_requests

	boolean

	True

	
On the client side, validates outgoing requests.

On the server side, validates incoming requests.

	validate_responses

	boolean

	True

	
On the client side, validates incoming responses.

On the server side, validates outgoing responses.

	use_models

	boolean

	True

	
Use python classes to represent models

instead of dicts. See Python Models.

	formats

	list of
SwaggerFormat

	[]

	
List of user-defined formats to support.

See User-Defined Formats.

	include_missing_properties

	boolean

	True

	
Create properties with the value None if they

were not submitted during object unmarshalling

Python Models

Models in a Swagger spec are usually defined under the path #/definitions.

A model can refer to a primitive type or a container type such as a list or
a dict. In dict form, there is an opportunity to make the interface to
access the properties of a model a little more straight forward.

Consider the following:

{
 "definitions": {
 "Pet": {
 "type": "object",
 "required": ["name"],
 "properties": {
 "name": {"type": "string"},
 "age": {"type": "integer"},
 "breed": {"type": "string"}
 }
 }
 }
}

In python, this model easily maps to a dict:

pet = {
 "name": "Sumi",
 "age": 12,
 "breed": None,
}

print pet['name']

if pet['age'] < 1:
 print 'What a cute puppy!'

if pet['breed'] is None:
 pet['breed'] = 'mutt'

However, if the model is implemented as a Python type, dotted access to
properties becomes a reality:

from bravado_core.spec import Spec

spec = Spec.from_dict(...)
Pet = spec.definitions['Pet']
pet = Pet(name='Sumi', age=12)

print pet.name

if pet.age < 1:
 print 'What a cute puppy!'

if pet.breed is None:
 pet.breed = 'mutt'

Configuring Models as Python Types

bravado-core supports models as both dicts and python types.

The feature to use python types for models is enabled by default. You can
always disable it if necessary.

from bravado_core.spec import Spec
swagger_dict = {..}
spec = Spec.from_dict(swagger_dict, config={'use_models': False})

Allowing null values for properties

Typically, bravado-core will complain during validation if it encounters fields with null values.
This can be problematic, especially when you’re adding Swagger support to pre-existing
APIs. In that case, declare your model properties as x-nullable:

{
 "Pet": {
 "type": "object",
 "properties": {
 "breed": {
 "type": "string",
 "x-nullable": true
 }
 }
 }
}

x-nullable is an extension to the Swagger 2.0 spec. A nullable attribute is being
considered [https://github.com/OAI/OpenAPI-Specification/pull/741] for the next major
version of Swagger.

Model Discovery

Keep in mind that bravado-core has to do some extra legwork to figure out which
parts of your spec represent Swagger models and which parts don’t to make this
feature work automagically. With a single-file Swagger spec, this is pretty
straight forward - everything under #/definitions is a model. However, with
more complicated specs that span multiple files and use external refs, it
becomes a bit more involved. For this reason, the discovery process for
models is best effort with a fallback to explicit annotations as follows:

	Search for refs that refer to #/definitions in local scope

	Search for refs that refer to external definitions with pattern <filename>#/definitions/<model name>.

swagger.json

{
 "paths": {
 "/pet": {
 "get": {
 "responses": {
 "200": {
 "description": "A pet",
 "schema": {
 "$ref": "another_file.json#/definitions/Pet"
 }
 }
 }
 }
 }
 }
 }

another_file.json

{
 "definitions": {
 "Pet": {
 ...
 }
 }
}

	Search for the "x-model": "<model name>" annotation to identify models that can’t be found via method 1. or 2.

swagger.json

{
 "paths": {
 "/pet": {
 "get": {
 "responses": {
 "200": {
 "description": "A pet",
 "schema": {
 "$ref": "https://my.company.com/definitions/models.json#/models/Pet"
 }
 }
 }
 }
 }
 }
}

models.json (served up via https://my.company.com/definitions/models.json)

{
 "models": {
 "Pet": {
 "x-model": "Pet"
 ...
 }
 }
}

User-Defined Formats

Primitive types in Swagger support an optional modifier property format as
explained in detail in the Swagger Specification [https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#data-types].
With this feature, you can define your own domain specific formats and have
validation and marshalling to/from python/json handled transparently.

Creating a user-defined format

This is best explained with a simple example. Let’s create a user-defined
format for CIDR notation [https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation].

In a Swagger spec, the schema-object for a CIDR would resemble:

{
 "type": "string",
 "format": "cidr",
 "description": "IPv4 CIDR"
}

In python, we’d like CIDRs to automatically be converted to a CIDR object
that makes them easy to work with.

class CIDR(object):
 def __init__(self, cidr):
 """
 :param cidr: CIDR in string form.
 """
 self.cidr = cidr

 def overlaps(self, other_cidr):
 """Return true if other_cidr overlaps with this cidr"""
 ...

 def subnet_mask(self):
 """Return the subnet mask of this cidr"""
 ...

 ...

We would also like CIDRs to be validated by bravado-core whenever they are
part of a HTTP request or response.

Create a bravado_core.formatter.SwaggerFormat to define the CIDR format:

from bravado_core.formatter import SwaggerFormat

def validate_cidr(cidr_string):
 if '/' not in cidr_string:
 raise SwaggerValidationError('CIDR {0} is invalid'.format(cidr_string))

cidr_format = SwaggerFormat(
 # name of the format as used in the Swagger spec
 format='cidr',

 # Callable to convert a python CIDR object to a string
 to_wire=lambda cidr_object: cidr_object.cidr,

 # Callable to convert a string to a python CIDR object
 to_python=lambda cidr_string: CIDR(cidr_string),

 # Callable to validate the cidr in string form
 validate=validate_cidr
)

Configuring user-defined formats

Now that we have a cidr_format, just pass it to a Spec as part of the
config parameter on Spec creation.

from bravado_core.spec import Spec

spec_dict = json.loads(open('swagger.json', 'r').read())
config = {
 'validate_responses': True,
 'validate_requests': True,
 'formats': [cidr_format],
}
spec = Spec.from_dict(spec_dict, config=config)

All validation and processing of HTTP requests and responses will now use the
configured format where appropriate.

Putting it all together

A simple example of passing a CIDR object to a request and getting a list of
CIDR objects back from the response.

{
 "paths": {
 "/get_overlapping_cidrs": {
 "get": {
 "parameters": [
 {
 "name": "cidr",
 "in": "query",
 "type": "string",
 "format": "cidr"
 }
],
 "responses": {
 "200": {
 "description": "List of overlapping cidrs",
 "schema": {
 "type": "array",
 "items": {
 "type": "string",
 "format": "cidr"
 }
 }
 }
 }
 }
 }
 }
}

from bravado_core.spec import Spec
from bravado_core.response import unmarshal_response
from bravado_core.param import marshal_param

Retrieve the swagger spec from the server and json.load() it
spec_dict = ...

Create cidr_format add it to the config dict
config = ...

Create a bravado_core.spec.Spec
swagger_spec = Spec.from_dict(spec_dict, config=config)

Get the operation to invoke
op = swagger_spec.get_op_for_request('GET', '/get_overlapping_cidrs')

Get the Param that represents the cidr query parameter
cidr_param = op.params.get('cidr')

Create a CIDR object - to_wire() will be called on this during marshalling
cidr_object = CIDR('192.168.1.1/24')
request_dict = {}

Marshal the cidr_object into the request_dict.
marshal_param(cidr_param, cidr_object, request_dict)

Lots of hand-wavey stuff here - use whatever http client you have to
send the request and receive a response
response = http_client.send(request_dict)

Extract the list of cidrs
cidrs = unmarshal_response(response)

Verify cidrs are CIDR objects and not strings
for cidr in cidrs:
 assert type(cidr) == CIDR

Changelog

4.8.2 (2017-09-04)

	Fix marshalling of null values for properties with x-nullable set to true - Issue #185, PR #186. Thanks Jan Baraniewski for the contribution!

	Add _asdict() method to each model, similar to what namedtuples have - PR #188.

4.8.1 (2017-08-24)

	Make unmarshalling objects roughly 30% faster - PR #182.

4.8.0 (2017-07-15)

	Add support for Swagger spec flattening - PR #177.

	Fix handling of API calls that return non-JSON content (specifically text content) - PR #175. Thanks mostrows2 for your contribution!

	Fix error message text when trying to unmarshal an invalid model - PR #179.

4.7.3 (2017-05-05)

	Fix support for object composition (allOf) for data passed in the request body - PR #167. Thanks Zi Li for your contribution!

	Return the default value for an optional field missing in the response - PR #171.

4.7.2 (2017-03-23)

	Fix unmarshalling of null values for properties with no spec - Issue #163, PR #165.

4.7.1 (2017-03-22)

	Fix backward-incompatible Model API change which renames all model methods to have a single underscore infront of them. A deprecation warning has been added - Issue #160, PR #161. Thanks Adam Ever-Hadani for the contribution!

4.7.0 (2017-03-21)

	Added support for nullable fields in the format validator - PR #143. Thanks Adam Ever-Hadani

	Add include_missing_properties configuration - PR #152

	Consider default when unmarshalling - PR #154

	Add discriminator support - PR #128, #159. Thanks Michael Jared Lumpe for your contribution

	Make sure pre-commit hooks are installed and run when running tests - PR #155, #158

4.6.1 (2017-02-15)

	Fix unmarshalling empty array types - PR #148

	Removed support for Python 2.6 - PR #147

4.6.0 (2016-11-28)

	Security Requirement validation (for ApiKey) - PR #124

	Allow self as name for model property, adds new “create” alternate model constructor - Issue #125, PR #126.

	Allow overriding of security specs - PR #121

	Adds minimal support for responses with text/* content_type.

4.5.1 (2016-09-27)

	Add marshal and unmarshal methods to models - PR #113, #120.

4.5.0 (2016-09-12)

	Support for model composition through the allOf property - Issue #7, PR #63, #110. Thanks David Bartle for the initial contribution!

	Fix issue with header parameter values being non-string types - PR #115.

4.4.0 (2016-08-26)

	Adds support for security scheme definitions, mostly focusing on the “apiKey” type - PR #112.

4.3.2 (2016-08-17)

	Fixes around unmarshalling, x-nullable and required behavior - Issue #108, PR #109. Big thanks to Zachary Roadhouse for the report and pull request!

	Fix AttributeError when trying to unmarshal a required array param that’s not present - PR #111.

4.3.1 (2016-08-09)

	Check if a parameter is bool-type before assuming it’s a string - PR #107. Thanks to Nick DiRienzo for the pull request!

4.3.0 (2016-08-04)

	Add support for x-nullable - Issue #47, PR #64 and #103. Thanks to Andreas Hug for the pull request!

	Fix support for vendor extensions at the path level - PR #95, #106. Thanks to Mikołaj Siedlarek for the initial pull request!

4.2.5 (2016-07-27)

	Add basepython python2.7 for flake8, docs, and coverage tox commands

4.2.4 (2016-07-26)

	coverage v4.2 was incompatible and was breaking the build. Added –append for the fix.

4.2.3 (2016-07-26)

	Accept tuples as a type list as well.

4.2.2 (2016-04-01)

	Fix marshalling of an optional array query parameter when not passed in the
service call - PR #87

4.2.1 (2016-03-23)

	Fix optional enums in request params - Issue #77

	Fix resolving refs during validation - Issue #82

4.2.0 (2016-03-10)

	More robust handling of operationId which contains non-standard chars - PR #76

	Provide a client ingestible version of spec_dict with x-scope metadata removed. Accessible as Spec.client_spec_dict - Issue #78

4.1.0 (2016-03-01)

	Better handling of query parameters that don’t have a value - Issue #68

	Allow marshalling of objects which are subclasses of dict - PR #61

	Fix boolean query params to support case-insensetive true/false and 0/1 - Issue #70

	Support for Swagger specs in yaml format - Issue #42

	Fix validation of server side request parameters when collectionFormat=multi and item type is not string - Issue #66

	Fix unmarshaling of server side request parameters when collectionFormat=multi and cardinality is one - PR #75

4.0.1 (2016-01-11)

	Fix unmarshalling of an optional array query parameter when not passed in the
query string.

4.0.0 (2015-11-17)

	Support for recursive $refs - Issue #35

	Requires swagger-spec-validator 2.0.1

	Unqualified $refs no longer supported.
Bad: {"$ref": "User"}
Good: {"$ref": "#/definitions/User"}

	Automatic tagging of models is only supported in the root swagger spec file.
If you have models defined in $ref targets that are in other files, you must
manually tag them with ‘x-model’ for them to be available as python types.
See Model Discovery [http://bravado-core.readthedocs.org/en/latest/models.html#model-discovery]
for more info.

3.1.1 (2015-10-19)

	Fix the creation of operations that contain shared parameters for a given endpoint.

3.1.0 (2015-10-19)

	Added http headers to bravado_core.response.IncomingResponse.

3.0.2 (2015-10-12)

	Added docs on how to use user-defined formats [http://bravado-core.readthedocs.org/en/latest/formats.html].

	Added docs on how to configure [http://bravado-core.readthedocs.org/en/latest/config.html] bravado-core.

	formats added as a config option

3.0.1 (2015-10-09)

	Automatically tag models in external $refs - Issue #45 - see Model Discovery [http://bravado-core.readthedocs.org/en/latest/models.html#model-discovery] for more info.

3.0.0 (2015-10-07)

	User-defined formats are now scoped to a Swagger spec - Issue #50 (this is a non-backwards compatible change)

	Deprecated bravado_core.request.RequestLike and renamed to bravado_core.request.IncomingRequest

	Added make docs target and updated docs (still needs a lot of work though)

2.4.1 (2015-09-30)

	Fixed validation of user-defined formats - Issue #48

2.4.0 (2015-08-13)

	Support relative ‘$ref’ external references in swagger.json

	Fix dereferencing of jsonref when given in a list

2.3.0 (2015-08-10)

	Raise MatchingResponseNotFound instead of SwaggerMappingError
when a response can’t be matched to the Swagger schema.

2.2.0 (2015-08-06)

	Add reason to IncomingResponse

2.1.0 (2015-07-17)

	Handle user defined formats for serialization and validation.

2.0.0 (2015-07-13)

	Move http invocation to bravado

	Fix unicode in model docstrings

	Require swagger-spec-validator 1.0.12 to pick up bug fixes

1.1.0 (2015-06-25)

	Better unicode support

	Python 3 support

1.0.0-rc2 (2015-06-01)

	Fixed file uploads when marshaling a request

	Renamed ResponseLike to IncomingResponse

	Fixed repr of a model when it has an attr with a unicode value

1.0.0-rc1 (2015-05-26)

	Use basePath when matching an operation to a request

	Refactored exception hierarchy

	Added use_models config option

0.1.0 (2015-05-13)

	Initial release

Index

 nav.xhtml

 Table of Contents

 		
 bravado_core documentation

 		
 Configuration

 		
 Python Models

 		
 Configuring Models as Python Types

 		
 Allowing null values for properties

 		
 Model Discovery

 		
 User-Defined Formats

 		
 Creating a user-defined format

 		
 Configuring user-defined formats

 		
 Putting it all together

 		
 Changelog

 		
 4.8.2 (2017-09-04)

 		
 4.8.1 (2017-08-24)

 		
 4.8.0 (2017-07-15)

 		
 4.7.3 (2017-05-05)

 		
 4.7.2 (2017-03-23)

 		
 4.7.1 (2017-03-22)

 		
 4.7.0 (2017-03-21)

 		
 4.6.1 (2017-02-15)

 		
 4.6.0 (2016-11-28)

 		
 4.5.1 (2016-09-27)

 		
 4.5.0 (2016-09-12)

 		
 4.4.0 (2016-08-26)

 		
 4.3.2 (2016-08-17)

 		
 4.3.1 (2016-08-09)

 		
 4.3.0 (2016-08-04)

 		
 4.2.5 (2016-07-27)

 		
 4.2.4 (2016-07-26)

 		
 4.2.3 (2016-07-26)

 		
 4.2.2 (2016-04-01)

 		
 4.2.1 (2016-03-23)

 		
 4.2.0 (2016-03-10)

 		
 4.1.0 (2016-03-01)

 		
 4.0.1 (2016-01-11)

 		
 4.0.0 (2015-11-17)

 		
 3.1.1 (2015-10-19)

 		
 3.1.0 (2015-10-19)

 		
 3.0.2 (2015-10-12)

 		
 3.0.1 (2015-10-09)

 		
 3.0.0 (2015-10-07)

 		
 2.4.1 (2015-09-30)

 		
 2.4.0 (2015-08-13)

 		
 2.3.0 (2015-08-10)

 		
 2.2.0 (2015-08-06)

 		
 2.1.0 (2015-07-17)

 		
 2.0.0 (2015-07-13)

 		
 1.1.0 (2015-06-25)

 		
 1.0.0-rc2 (2015-06-01)

 		
 1.0.0-rc1 (2015-05-26)

 		
 0.1.0 (2015-05-13)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

