
bravado𝑐𝑜𝑟𝑒
Release 5.0.3

Jun 14, 2018

Contents

1 Configuration 3

2 Python Models 5

3 User-Defined Formats 9

4 Changelog 13

5 Indices and tables 23

i

ii

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

bravado_core is a Python library that implements the Swagger 2.0 Specification.

Client and servers alike can use bravado_core to implement these features:

• Swagger Schema ingestion and validation

• Validation and marshalling of requests and responses

• Validation and marshalling of user-defined Swagger formats

• Modelling Swagger #/definitions as Python classes or dicts

For example:

• bravado uses bravado-core to implement a fully functional Swagger client.

• pyramid_swagger uses bravado-core to seamlessly add Swagger support to Pyramid webapps.

Contents:

Contents 1

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
http://github.com/Yelp/bravado
http://github.com/striglia/pyramid_swagger

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

2 Contents

CHAPTER 1

Configuration

All configuration is stored in a dict.

from bravado_core.spec import Spec

spec_dict = json.loads(open('swagger.json', 'r').read())

config = {
'validate_requests': False,
'use_models': False,

}

swagger_spec = Spec.from_dict(spec_dict, config=config)

3

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

Config key Type Default Description
validate_swagger_spec boolean True

Validate the Swagger spec
against
the Swagger 2.0
Specification.

validate_requests boolean True

On the client side,
validates outgoing
requests.
On the server side,
validates incoming
requests.

validate_responses boolean True

On the client side,
validates incoming
responses.
On the server side,
validates outgoing
responses.

use_models boolean True

Use python classes to
represent models
instead of dicts. See
Python Models.

formats list of SwaggerFormat []

List of user-defined
formats to support.
See User-Defined
Formats.

include_missing_properties boolean True

Create properties with the
value None if they
were not submitted during
object unmarshalling

default_type_to_object boolean False

When set to True,
missing types will default
to object and be
validated as such.
When set to False,
missing types will not be
validated at all.

4 Chapter 1. Configuration

CHAPTER 2

Python Models

Models in a Swagger spec are usually defined under the path #/definitions.

A model can refer to a primitive type or a container type such as a list or a dict. In dict form, there is an
opportunity to make the interface to access the properties of a model a little more straight forward.

Consider the following:

{
"definitions": {

"Pet": {
"type": "object",
"required": ["name"],
"properties": {

"name": {"type": "string"},
"age": {"type": "integer"},
"breed": {"type": "string"}

}
}

}
}

In python, this model easily maps to a dict:

pet = {
"name": "Sumi",
"age": 12,
"breed": None,

}

print pet['name']

if pet['age'] < 1:
print 'What a cute puppy!'

(continues on next page)

5

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

(continued from previous page)

if pet['breed'] is None:
pet['breed'] = 'mutt'

However, if the model is implemented as a Python type, dotted access to properties becomes a reality:

from bravado_core.spec import Spec

spec = Spec.from_dict(...)
Pet = spec.definitions['Pet']
pet = Pet(name='Sumi', age=12)

print pet.name

if pet.age < 1:
print 'What a cute puppy!'

if pet.breed is None:
pet.breed = 'mutt'

2.1 Configuring Models as Python Types

bravado-core supports models as both dicts and python types.

The feature to use python types for models is enabled by default. You can always disable it if necessary.

from bravado_core.spec import Spec
swagger_dict = {..}
spec = Spec.from_dict(swagger_dict, config={'use_models': False})

2.2 Allowing null values for properties

Typically, bravado-core will complain during validation if it encounters fields with null values. This can be problem-
atic, especially when you’re adding Swagger support to pre-existing APIs. In that case, declare your model properties
as x-nullable:

{
"Pet": {

"type": "object",
"properties": {

"breed": {
"type": "string",
"x-nullable": true

}
}

}
}

x-nullable is an extension to the Swagger 2.0 spec. A nullable attribute is being considered for the next major
version of Swagger.

6 Chapter 2. Python Models

https://github.com/OAI/OpenAPI-Specification/pull/741

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

2.3 Sensitive Data

Typically, if bravado-core encounters an error validaing a request or a response, the value will be included in the
exception message. If you have sensitive data, this can be problematic. To prevent a sensitive value from appearing in
the exception details, declare the field as x-sensitive:

{
"Pet": {

"type": "object",
"properties": {

"breed": {
"type": "string",
"x-sensitive": true

}
}

}
}

x-sensitive is an extension to the Swagger 2.0 spec. The x-sensitive extension can be applied to arrays and
primitives as well as objects.

2.4 Model Discovery

Keep in mind that bravado-core has to do some extra legwork to figure out which parts of your spec represent Swagger
models and which parts don’t to make this feature work automagically. With a single-file Swagger spec, this is pretty
straight forward - almost everything under #/definitions is a model. However, with more complicated specs that
span multiple files and use external refs, it becomes a bit more involved. For this reason, the discovery process for
models is best effort with a fallback to explicit annotations as follows:

1. Search for refs that refer to #/definitions in local scope

2. Search for refs that refer to external definitions with pattern <filename>#/definitions/<model
name>.

swagger.json

{
"paths": {

"/pet": {
"get": {

"responses": {
"200": {

"description": "A pet",
"schema": {

"$ref": "another_file.json#/definitions/Pet"
}

}
}

}
}

}
}

another_file.json

2.3. Sensitive Data 7

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

{
"definitions": {

"Pet": {
...

}
}

}

3. Search for the "x-model": "<model name>" or "title": "<model name>" annotation to
identify models that can’t be found via method 1. or 2. In case x-model and title are both defined,
x-model has precedence. swagger.json

{
"paths": {

"/pet": {
"get": {

"responses": {
"200": {

"description": "A pet",
"schema": {

"$ref": "https://my.company.com/definitions/models.
→˓json#/models/Pet"

}
}

}
}

}
}

}

models.json (served up via https://my.company.com/definitions/models.json)

{
"models": {

"Pet": {
"x-model": "Pet"
...

}
}

}

Note: Models will be generated only for object types ("type": "object").

8 Chapter 2. Python Models

CHAPTER 3

User-Defined Formats

Primitive types in Swagger support an optional modifier property format as explained in detail in the Swagger
Specification. With this feature, you can define your own domain specific formats and have validation and marshalling
to/from python/json handled transparently.

3.1 Creating a user-defined format

This is best explained with a simple example. Let’s create a user-defined format for CIDR notation.

In a Swagger spec, the schema-object for a CIDR would resemble:

{
"type": "string",
"format": "cidr",
"description": "IPv4 CIDR"

}

In python, we’d like CIDRs to automatically be converted to a CIDR object that makes them easy to work with.

class CIDR(object):
def __init__(self, cidr):

"""
:param cidr: CIDR in string form.
"""
self.cidr = cidr

def overlaps(self, other_cidr):
"""Return true if other_cidr overlaps with this cidr"""
...

def subnet_mask(self):
"""Return the subnet mask of this cidr"""
...

(continues on next page)

9

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#data-types
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#data-types
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

(continued from previous page)

...

We would also like CIDRs to be validated by bravado-core whenever they are part of a HTTP request or response.

Create a bravado_core.formatter.SwaggerFormat to define the CIDR format:

from bravado_core.formatter import SwaggerFormat

def validate_cidr(cidr_string):
if '/' not in cidr_string:

raise SwaggerValidationError('CIDR {0} is invalid'.format(cidr_string))

cidr_format = SwaggerFormat(
name of the format as used in the Swagger spec
format='cidr',

Callable to convert a python CIDR object to a string
to_wire=lambda cidr_object: cidr_object.cidr,

Callable to convert a string to a python CIDR object
to_python=lambda cidr_string: CIDR(cidr_string),

Callable to validate the cidr in string form
validate=validate_cidr

)

3.2 Configuring user-defined formats

Now that we have a cidr_format, just pass it to a Spec as part of the config parameter on Spec creation.

from bravado_core.spec import Spec

spec_dict = json.loads(open('swagger.json', 'r').read())
config = {

'validate_responses': True,
'validate_requests': True,
'formats': [cidr_format],

}
spec = Spec.from_dict(spec_dict, config=config)

All validation and processing of HTTP requests and responses will now use the configured format where appropriate.

3.3 Putting it all together

A simple example of passing a CIDR object to a request and getting a list of CIDR objects back from the response.

{
"paths": {

"/get_overlapping_cidrs": {
"get": {

"parameters": [

(continues on next page)

10 Chapter 3. User-Defined Formats

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

(continued from previous page)

{
"name": "cidr",
"in": "query",
"type": "string",
"format": "cidr"

}
],
"responses": {

"200": {
"description": "List of overlapping cidrs",
"schema": {

"type": "array",
"items": {

"type": "string",
"format": "cidr"

}
}

}
}

}
}

}
}

from bravado_core.spec import Spec
from bravado_core.response import unmarshal_response
from bravado_core.param import marshal_param

Retrieve the swagger spec from the server and json.load() it
spec_dict = ...

Create cidr_format add it to the config dict
config = ...

Create a bravado_core.spec.Spec
swagger_spec = Spec.from_dict(spec_dict, config=config)

Get the operation to invoke
op = swagger_spec.get_op_for_request('GET', '/get_overlapping_cidrs')

Get the Param that represents the cidr query parameter
cidr_param = op.params.get('cidr')

Create a CIDR object - to_wire() will be called on this during marshalling
cidr_object = CIDR('192.168.1.1/24')
request_dict = {}

Marshal the cidr_object into the request_dict.
marshal_param(cidr_param, cidr_object, request_dict)

Lots of hand-wavey stuff here - use whatever http client you have to
send the request and receive a response
response = http_client.send(request_dict)

Extract the list of cidrs
cidrs = unmarshal_response(response)

(continues on next page)

3.3. Putting it all together 11

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

(continued from previous page)

Verify cidrs are CIDR objects and not strings
for cidr in cidrs:

assert type(cidr) == CIDR

3.4 Overriding built-in formats is also possible with a user-defined
format

By default format ‘double’ is internally converted to a float in python. This runs the risk of being imprecise due to
the way floats are handled. If you would like to instead use the decimal.Decimal() type for more precision, you can
override this built-in format. See Also: Floating Point Precision.

You’d define the type:

from decimal import Decimal
import re

is_decimal = re.compile(r'^\d+(?:\.\d+)?$')
def validate_decimaltype(x):
"""Validate input is a str in valid decimal format"""
if not (isinstance(x, str) and is_decimal.match(x)):

raise bravado_core.exception.SwaggerValidationError()

mydouble = SwaggerFormat(
format='double',
to_wire=lambda x: str(x) if isinstance(x, Decimal) else str(Decimal(x)),
to_python=lambda x: x if isinstance(x, Decimal) else Decimal(x),
validate=validate_decimaltype,
description="model format double internally as Decimal()"

)

Then in your config block you include this format:

config = {
'formats': [mydouble],
...

}

Create a bravado_core.spec.Spec
swagger_spec = Spec.from_dict(spec_dict, config=config)

3.5 Note about using precise Decimal format in Spec

The above works when the openapi schema is written as string(double) e.g. the spec passes the value as string
on the wire and format is double. If the spec said it was a number(double), it is likely that json will first convert the
number from the wire to a float and then pass that into Decimal() with unguaranteed precision. The calls to json would
need use_decimals=True for that to work.

12 Chapter 3. User-Defined Formats

https://docs.python.org/tutorial/floatingpoint.html

CHAPTER 4

Changelog

4.1 5.0.3 (2018-06-06)

• Make sure spaces in path param values are quoted using percent notation instead of using +. Issue #278, PR
#279

4.2 5.0.2 (2018-06-04)

• Fix regression if internally_dereference_refs is used. Issue #275, PR #276

4.3 5.0.1 (2018-05-30)

• No longer make sure that all config keys are known; this allows users of the library to store additional configu-
ration. - PR #274

4.4 5.0.0 (2018-05-30)

• Refactor: model discovery is now handled in bravado_core.model - PR #270

• Remove deprecated methods from Model type - PR #270

• Remove deprecated parameters from bravado_core.spec_flattening.flattened_spec - PR
#269

• Ensure that models in #/definitions of referenced files are discovered - PR #273

13

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

Warning: This release contains breaking changes! The signature of bravado_core.spec_flattening.
flattened_spec has been updated. The following methods have been removed from the public interface:
bravado_core.model.tag_models, bravado_core.model.bless_models, bravado_core.
model.collect_models and bravado_core.spec.post_process_spec.

4.5 4.13.4 (2018-05-24)

• Fix marsharling and unmarshaling of optional body parameters. PR #268

4.6 4.13.3 (2018-05-16)

• Add support for Content-Disposition filename - PR #262. Thanks elmirjagudin for your contribution!

• Improve specs flattening and dereferencing in case of relative references - PR #263

4.7 4.13.2 (2018-03-19)

• Fix bug where multiple schemes in the spec would sometimes cause a SwaggerSchemaError - PR #260

4.8 4.13.1 (2018-03-02)

• Catch TypeErrors during param unmarshalling, allowing JSON Schema to handle the error - Issue #258, PR
#259. Thanks Nick DiRienzo for your contribution!

4.9 4.13.0 (2018-02-23)

• Models are generated only for objects - PR #246.

• Fix: ensure that models do not have references if internally_dereference_refs is used - PR #247.

• Model name detection uses title attribute too - PR #249.

• Duplicated models do not raise exception if use_models is not used - PR #253.

• Alert or warn if pre-tagged duplicate models are found - PR #254.

4.10 4.12.1 (2018-02-07)

• Make sure unsanitized param names are used when unmarshalling a request - PR #245.

• Expose the determine_object_type method as part of our API - PR #244.

14 Chapter 4. Changelog

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.11 4.12.0 (2018-02-06)

• Sanitize resource and parameter names so that they’re valid Python identifiers. It uses the same logic as for
operationIds - invalid characters are replaced with underscores, multiple consecutive underscores are merged
into one, and leading / trailing underscores are removed. Using the unsanitized names will still work - Issue
#200, PR #243.

• Allow overriding built-in default formats - Issue #235, PR #240. Thanks Brian J. Dowling for your contribution!

• Include additionalProperties in a models’ __repr__ - PR #242. Thanks again Brian J. Dowling!

4.12 4.11.5 (2018-01-30)

• Use yaml.safe_load for parsing specs - PR #241.

4.13 4.11.4 (2018-01-19)

• Properly quote request parameters sent as part of the URL path - PR #237, #238.

4.14 4.11.3 (2018-01-16)

• Remove strict isinstance check when marshalling models - PR #236.

4.15 4.11.2 (2018-01-08)

• Ensure internally_dereference_refs works with recursive specs - PR #234.

4.16 4.11.1 (2017-12-18)

• Speed up marshalling and unmarshalling of objects - PR #226.

• Use msgpack-python instead of u-msgpack-python for performance improvements - Issue #227, PR #228.

4.17 4.11.0 (2017-11-09)

• Add support for msgpack in responses (i.e. when unmarshalling) - Issue #214, PR #216.

• Improve performance by removing debug logging when dereferencing - PR #208.

4.18 4.10.1 (2017-11-06)

• Don’t remove unrecognized configs; fixes compatibility with bravado - PR #218.

4.11. 4.12.0 (2018-02-06) 15

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.19 4.10.0 (2017-11-03)

• New config internally_dereference_refs that can significantly speed up unmarshalling. Currently
disabled by default - PR #204.

• Added support for new extension x-sensitive to scrub sensitive values from validation errors. Please check
the documentation for further details - PR #213.

• Fixed an issue that would cause validation errors if obj_type was None - PR #196.

• Fixed handling of defaults for array parameters - PR #199.

• Performance improvements - PR #207.

4.20 4.9.1 (2017-09-19)

• Properly marshal a model even if it’s not created from the same Spec instance - PR #194.

4.21 4.9.0 (2017-09-11)

• type is no longer required. By default, validation will not be performed if type is omitted. This is configurable
with default_type_to_object - Issue #166, #192, PR #183, #193

4.22 4.8.4 (2017-09-06)

• Make sure all models are properly tagged when flattening the spec - PR #191.

4.23 4.8.3 (2017-09-05)

• Improve spec flattening: recognize response objects and expose un-referenced models - PR #184.

• Fix a bug when marshalling properties with no spec that have the value None - PR #189.

4.24 4.8.2 (2017-09-04)

• Fix marshalling of null values for properties with x-nullable set to true - Issue #185, PR #186. Thanks
Jan Baraniewski for the contribution!

• Add _asdict() method to each model, similar to what namedtuples have - PR #188.

4.25 4.8.1 (2017-08-24)

• Make unmarshalling objects roughly 30% faster - PR #182.

16 Chapter 4. Changelog

http://bravado-core.readthedocs.io/en/latest/models.html#sensitive-data

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.26 4.8.0 (2017-07-15)

• Add support for Swagger spec flattening - PR #177.

• Fix handling of API calls that return non-JSON content (specifically text content) - PR #175. Thanks mostrows2
for your contribution!

• Fix error message text when trying to unmarshal an invalid model - PR #179.

4.27 4.7.3 (2017-05-05)

• Fix support for object composition (allOf) for data passed in the request body - PR #167. Thanks Zi Li for your
contribution!

• Return the default value for an optional field missing in the response - PR #171.

4.28 4.7.2 (2017-03-23)

• Fix unmarshalling of null values for properties with no spec - Issue #163, PR #165.

4.29 4.7.1 (2017-03-22)

• Fix backward-incompatible Model API change which renames all model methods to have a single underscore
infront of them. A deprecation warning has been added - Issue #160, PR #161. Thanks Adam Ever-Hadani for
the contribution!

4.30 4.7.0 (2017-03-21)

• Added support for nullable fields in the format validator - PR #143. Thanks Adam Ever-Hadani

• Add include_missing_properties configuration - PR #152

• Consider default when unmarshalling - PR #154

• Add discriminator support - PR #128, #159. Thanks Michael Jared Lumpe for your contribution

• Make sure pre-commit hooks are installed and run when running tests - PR #155, #158

4.31 4.6.1 (2017-02-15)

• Fix unmarshalling empty array types - PR #148

• Removed support for Python 2.6 - PR #147

4.26. 4.8.0 (2017-07-15) 17

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.32 4.6.0 (2016-11-28)

• Security Requirement validation (for ApiKey) - PR #124

• Allow self as name for model property, adds new “create” alternate model constructor - Issue #125, PR #126.

• Allow overriding of security specs - PR #121

• Adds minimal support for responses with text/* content_type.

4.33 4.5.1 (2016-09-27)

• Add marshal and unmarshal methods to models - PR #113, #120.

4.34 4.5.0 (2016-09-12)

• Support for model composition through the allOf property - Issue #7, PR #63, #110. Thanks David Bartle for
the initial contribution!

• Fix issue with header parameter values being non-string types - PR #115.

4.35 4.4.0 (2016-08-26)

• Adds support for security scheme definitions, mostly focusing on the “apiKey” type - PR #112.

4.36 4.3.2 (2016-08-17)

• Fixes around unmarshalling, x-nullable and required behavior - Issue #108, PR #109. Big thanks to Zachary
Roadhouse for the report and pull request!

• Fix AttributeError when trying to unmarshal a required array param that’s not present - PR #111.

4.37 4.3.1 (2016-08-09)

• Check if a parameter is bool-type before assuming it’s a string - PR #107. Thanks to Nick DiRienzo for the pull
request!

4.38 4.3.0 (2016-08-04)

• Add support for x-nullable - Issue #47, PR #64 and #103. Thanks to Andreas Hug for the pull request!

• Fix support for vendor extensions at the path level - PR #95, #106. Thanks to Mikołaj Siedlarek for the initial
pull request!

18 Chapter 4. Changelog

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.39 4.2.5 (2016-07-27)

• Add basepython python2.7 for flake8, docs, and coverage tox commands

4.40 4.2.4 (2016-07-26)

• coverage v4.2 was incompatible and was breaking the build. Added –append for the fix.

4.41 4.2.3 (2016-07-26)

• Accept tuples as a type list as well.

4.42 4.2.2 (2016-04-01)

• Fix marshalling of an optional array query parameter when not passed in the service call - PR #87

4.43 4.2.1 (2016-03-23)

• Fix optional enums in request params - Issue #77

• Fix resolving refs during validation - Issue #82

4.44 4.2.0 (2016-03-10)

• More robust handling of operationId which contains non-standard chars - PR #76

• Provide a client ingestible version of spec_dict with x-scope metadata removed. Accessible as
Spec.client_spec_dict - Issue #78

4.45 4.1.0 (2016-03-01)

• Better handling of query parameters that don’t have a value - Issue #68

• Allow marshalling of objects which are subclasses of dict - PR #61

• Fix boolean query params to support case-insensetive true/false and 0/1 - Issue #70

• Support for Swagger specs in yaml format - Issue #42

• Fix validation of server side request parameters when collectionFormat=multi and item type is not string - Issue
#66

• Fix unmarshaling of server side request parameters when collectionFormat=multi and cardinality is one - PR
#75

4.39. 4.2.5 (2016-07-27) 19

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.46 4.0.1 (2016-01-11)

• Fix unmarshalling of an optional array query parameter when not passed in the query string.

4.47 4.0.0 (2015-11-17)

• Support for recursive $refs - Issue #35

• Requires swagger-spec-validator 2.0.1

• Unqualified $refs no longer supported. Bad: {"$ref": "User"} Good: {"$ref": "#/
definitions/User"}

• Automatic tagging of models is only supported in the root swagger spec file. If you have models defined in $ref
targets that are in other files, you must manually tag them with ‘x-model’ for them to be available as python
types. See Model Discovery for more info.

4.48 3.1.1 (2015-10-19)

• Fix the creation of operations that contain shared parameters for a given endpoint.

4.49 3.1.0 (2015-10-19)

• Added http headers to bravado_core.response.IncomingResponse.

4.50 3.0.2 (2015-10-12)

• Added docs on how to use user-defined formats.

• Added docs on how to configure bravado-core.

• formats added as a config option

4.51 3.0.1 (2015-10-09)

• Automatically tag models in external $refs - Issue #45 - see Model Discovery for more info.

4.52 3.0.0 (2015-10-07)

• User-defined formats are now scoped to a Swagger spec - Issue #50 (this is a non-backwards compatible change)

• Deprecated bravado_core.request.RequestLike and renamed to bravado_core.request.IncomingRequest

• Added make docs target and updated docs (still needs a lot of work though)

20 Chapter 4. Changelog

http://bravado-core.readthedocs.org/en/latest/models.html#model-discovery
http://bravado-core.readthedocs.org/en/latest/formats.html
http://bravado-core.readthedocs.org/en/latest/config.html
http://bravado-core.readthedocs.org/en/latest/models.html#model-discovery

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.53 2.4.1 (2015-09-30)

• Fixed validation of user-defined formats - Issue #48

4.54 2.4.0 (2015-08-13)

• Support relative ‘$ref’ external references in swagger.json

• Fix dereferencing of jsonref when given in a list

4.55 2.3.0 (2015-08-10)

• Raise MatchingResponseNotFound instead of SwaggerMappingError when a response can’t be matched to the
Swagger schema.

4.56 2.2.0 (2015-08-06)

• Add reason to IncomingResponse

4.57 2.1.0 (2015-07-17)

• Handle user defined formats for serialization and validation.

4.58 2.0.0 (2015-07-13)

• Move http invocation to bravado

• Fix unicode in model docstrings

• Require swagger-spec-validator 1.0.12 to pick up bug fixes

4.59 1.1.0 (2015-06-25)

• Better unicode support

• Python 3 support

4.60 1.0.0-rc2 (2015-06-01)

• Fixed file uploads when marshaling a request

• Renamed ResponseLike to IncomingResponse

• Fixed repr of a model when it has an attr with a unicode value

4.53. 2.4.1 (2015-09-30) 21

bravado𝑐𝑜𝑟𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒5.0.3

4.61 1.0.0-rc1 (2015-05-26)

• Use basePath when matching an operation to a request

• Refactored exception hierarchy

• Added use_models config option

4.62 0.1.0 (2015-05-13)

• Initial release

22 Chapter 4. Changelog

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

	Configuration
	Python Models
	User-Defined Formats
	Changelog
	Indices and tables

